Monaural spectral contrast mechanism for neural sensitivity to sound direction in the medial geniculate body of the cat.

نویسندگان

  • T J Imig
  • P Poirier
  • W A Irons
  • F K Samson
چکیده

Monaural spectral contrast mechanism for neural sensitivity to sound direction in the medial geniculate body of the cat. J. Neurophysiol. 78: 2754-2771, 1997. Central auditory neurons vary in sound direction sensitivity. Insensitive cells discharge well to all sound source directions, whereas sensitive cells discharge well to certain directions and poorly to others. High-frequency neurons in the latter group are differentially sensitive to binaural and monaural directional cues present in broadband noise (BBN). Binaural directional (BD) cells require binaural stimulation for directional sensitivity; monaural directional (MD) cells are sensitive to the direction of monaural stimuli. A model of MD sensitivity was tested using single-unit responses. The model assumes that MD cells derive directional sensitivity from pinna-derived spectral cues (head related transfer function, HRTF). This assumption was supported by the similarity of effects that pinna orientation produces on locations of HRTF patterns and on locations of MD cell azimuth function peaks and nulls. According to the model, MD neurons derive directional sensitivity by use of excitatory/inhibitory antagonism to compare sound pressure in excitatory and inhibitory frequency domains, and a variety of observations are consistent with this idea. 1) Frequency response areas of MD cells consist of excitatory and inhibitory domains. MD cells exhibited a higher proportion of multiple excitatory domains and narrower excitatory frequency domains than BD cells, features that may reflect specialization for spectral-dependent directional sensitivity. 2) MD sensitivity requires sound pressure in excitatory and inhibitory frequency domains. Directional sensitivity was evaluated using stimuli with frequency components confined exclusively to excitatory domains (E-only stimuli) or distributed in both excitatory and inhibitory domains (E/I stimuli). Each of 13 MD cells that were tested exhibited higher directional sensitivity to E/I than to E-only stimuli; most MD cells exhibited relatively low directional sensitivity when frequency components were confined exclusively to excitatory domains. 3) MD sensitivity derives from excitatory/inhibitory antagonism (spectral inhibition). Comparison of responses to best frequency and E/I stimuli provided strong support for spectral inhibition. Although spectral facilitation conceivably could contribute to directional sensitivity with direction-dependent increases in response, the results did not show this to be a significant factor. 4) Direction-dependent decreases in responsiveness to BBN reflect increased sound pressure in inhibitory relative to excitatory frequency domains. This idea was tested using the strength of two-tone inhibition, which is a function of stimulus levels in inhibitory relative to excitatory frequency domains. The finding that two-tone inhibition was stronger at directions where BBN responses were minimal than at directions where they were maximal supports the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directionality derived from differential sensitivity to monaural and binaural cues in the cat's medial geniculate body.

Azimuth tuning of high-frequency neurons in the primary auditory cortex (AI) is known to depend on binaural disparity and monaural spectral (pinna) cues present in broadband noise bursts. Single-unit response patterns differ according to binaural interactions, strength of monaural excitatory input from each ear, and azimuth sensitivity to monaural stimulation. The latter characteristic has been...

متن کامل

Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex.

We report evidence for a context- and not stimulus-dependent functional asymmetry in the left and right human auditory midbrain, thalamus, and cortex in response to monaural sounds. Neural activity elicited by left- and right-ear stimulation was measured simultaneously in the cochlear nuclei, inferior colliculi (ICs), medial geniculate bodies (MGBs), and auditory cortices (ACs) in 2 functional ...

متن کامل

Transformation of spatial sensitivity along the ascending auditory pathway.

Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, s...

متن کامل

Sensitivity of V1 neurons to direction of spectral motion.

Motion-in-depth causes changes in the size of retinal images in addition to producing optic flow patterns. A previous psychophysical study showed that human subjects can perceive expansion motion in texture stimuli that exhibit increases in the scale of image elements but no consistent optic flow pattern. The neural mechanisms by which the scale-change information is processed remain unknown. H...

متن کامل

Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus.

We present evidence for parallel auditory thalamocortical pathways that serve two different behaviors. The pallid bat listens for prey-generated noise (5-35 kHz) to localize prey, while reserving echolocation [downward frequency-modulated (FM) sweeps, 60-30 kHz] for obstacle avoidance. Its auditory cortex contains a tonotopic map representing frequencies from 6 to 70 kHz. The high-frequency (BF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 5  شماره 

صفحات  -

تاریخ انتشار 1997